ClasSi: Measuring Ranking Quality in the Presence of Object Classes with Similarity Information

The quality of rankings can be evaluated by computing their correlation to an optimal ranking. State of the art ranking correlation coefficients like Kendall´s tau and Spearman´s rho do not allow for the user to specify similarities between differing object classes and thus treat the transposition of objects from similar classes the same way as that of objects from dissimilar classes. We propose ClasSi, a new ranking correlation coefficient which deals with class label rankings and employs a class distance function to model the similarities between the classes. We also introduce a graphical representation of ClasSi akin to the ROC curve which describes how the correlation evolves throughout the ranking.

Authors: Zimmer (née Ivanescu) A., Wichterich M., Seidl T.
Published in: Workshop on Quality Issues, Measures of Interestingness and Evaluation of Data Mining Models (QIMIE 2011), in conjunction with the International Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2011), Shenzhen, China.
Publisher: Springer Verlag Berlin Heidelberg
Sprache: EN
Jahr: 2011


Seiten: 185-196
ISBN: 978-3-642-28319-2
Konferenz: PAKDD
QIMIE 2011
DOI: 10.1007/978-3-642-28320-8_16
Typ: Tagungsbeiträge
Forschungsgebiet: Data Analysis and Knowledge Extraction