4 Ergebnisse


Günnemann S., Boden B., Seidl T.:
Finding Density-Based Subspace Clusters in Graphs with Feature Vectors
Data Mining and Knowledge Discovery Journal (DMKD), Vol. 25, Nr. 2 S.243-269 (2012)
[Supplementary Material]


Günnemann S., Boden B., Seidl T.:
DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors
Proc. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2011), Athens, Greece S.565-580 (2011) ECML PKDD 2011 Best Paper Award in Data Mining
[ECML PKDD 2011] [Full Text PDF] [Supplementary Material]


Günnemann S., Färber I., Boden B., Seidl T.:
Subspace Clustering Meets Dense Subgraph Mining: A Synthesis of Two Paradigms
Proc. IEEE International Conference on Data Mining (ICDM 2010), Sydney, Australia S.845-850 (2010)
[ICDM 2010] [Supplementary material]